Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541456

RESUMO

High-temperature wetting of natural, high-purity quartz (SiO2) and liquid magnesium (Mg) was investigated at temperatures between 973 and 1273 K. Sessile drop experiments using the capillary purification (CP) procedure were carried out under an Ar gas atmosphere (N6.0), eliminating the native oxide layer on the surface of Mg melt. The results showed that the wetting behavior was strongly dependent on temperature. At 973 and 1073 K, the wetting system displayed relatively large contact angles of 90° and 65°, respectively, demonstrating modest wetting. The wetting increased to some extent by increasing the temperature to 1123 K with a wetting angle of 22°. However, the SiO2/Mg system demonstrated complete wetting at temperatures of 1173 K and above. Furthermore, interface microstructure examination showed different reaction product phases/microstructures, depending on the wetting experiment temperature.

2.
Materials (Basel) ; 14(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34279318

RESUMO

To properly design and optimize liquid-assisted processes, such as reactive infiltration for fabricating lightweight and corrosion resistant SiC/TiSi2 composites, the extensive knowledge about the interfacial phenomena taking place when liquid Si-rich Si-Ti alloys are in contact with glassy carbon (GC) is of primary importance. To this end, the wettability of GC by two different Si-rich Si-Ti alloys was investigated for the first time by both the sessile and pendant drop methods at T = 1450 °C. The results obtained, in terms of contact angle values, spreading kinetics, reactivity, and developed interface microstructures, were compared with experimental observations previously obtained for the liquid Si-rich Si-Ti eutectics processed under the same operating conditions. As the main outcome, a different Si content did not seem to affect the final contact angle values. Contrarily, the final developed microstructure at the interface and the spreading kinetics were observed as weakly dependent on the composition. From a practical point of view, Si-Ti alloy compositions with a Si content falling in the simple eutectic region of the Si-Ti phase diagram might be potentially used as infiltrating materials of C- and SiC-based composites.

3.
Materials (Basel) ; 13(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155942

RESUMO

To succeed in the design and optimization of liquid-assisted processes such as reactive infiltration for the fabrication of tailored refractory SiC/ZrSi2 composites, the interfacial phenomena that occur when Si-rich Si-Zr alloys are in contact with glassy carbon (GC) were investigated for the first time by the sessile drop method at T = 1450 °C. Specifically, two different Si-rich Si-Zr alloys were selected, and the obtained results in terms of wettability, spreading kinetics, reactivity, and developed interface microstructures were compared with experimental observations that were previously obtained for the liquid Si-rich, Si-Zr, near-eutectic composition (i.e., Si-10 at.%Zr) that was processed under the same operating conditions. The increase of the Si content only weakly affected the overall phenomena that were observed at the interface. From the practical point of view, this means that even Si-Zr alloys with a higher Si content, with respect to the near eutectic alloy, may be potentially used as infiltrant materials.

4.
J Chem Phys ; 140(21): 214704, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24908032

RESUMO

In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...